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ABSTRACT 

Transform coding has been widely used in video coding standards. 
In this paper. a hardware architecture for accelerating transform 
coding operations in MPEG-4 AVC/H.264[2] is presented. This 
architecture calculates 4 inputs in parallel by the fast algorithms 
described in [4]. The transpose operations are implemented by a 
register array with directional transfers. This architecture has been 
mapped into a 4 x 4 multiple transforms unit and synthesized in 
TSMC 0.35um technology. The multiple transform processor can 
process 320M pixeldsec at SOMhz for all 4 x 4 transforms used in 
MPEG-4 AVC/ H.264. 

1. INTRODUCTION 

MPEG-4 AVUH.264 is initiated by ITU-T as H.26L and will be- 
come a joint standard for ITU-T and MPEG. The compression gain 
of H.264 is much higher than H.263[1] and MPEG-4 simple pro- 
file. One of the major differences between H.263 and H.264 is 
the transform coding. H.264 adopts variable block size motion 
compensation scheme and the smallest block size is 4 x 4 pixels, 
Transform coding for residual coding is set to 4 x 4 to match the 
smallest block size. Although the transform coding gain decreases 
a little comparing to 8 x 8 DCT[3] in H.263, good motion estima- 
tion results in better PSNR performance. 

Another advantage of H.264 transform coding is the simplic- 
i ty  of the transform. Integer coefficient transform, which is a close 
approximation to DCT, is adopted in  H.264. Since the coefficients 
are integers, there will be no mismatch problem like H.263, and 
the restriction of intra update in H.263 is removed. Integer coef- 
ficients also imply simple hardware implementation. H.264 only 
use 4 coefficients for the transforms. And the multiplications can 
be replaced by shifts and additions. 

Although the computation complexity ofthe transforms in the 
H.264 standard is less than H.263, hardware implementation of 
the transform coding is required in both dedicated and platform 
based codec systems. Dedicated hardware design of codec re- 
quires transform unit to complete the dataflow. Platform based 
design usually requires transform unit as a coprocessor to increase 
the processing rate and alleviate the loading of the processor. In 
this paper, we propose a parallel architecture to increase the data 
processing rate in the transform unit. The architecture can process 
4 pixels per cycle with a small gate count. The interface bit width 
is 64 bits so that it can be easily adapted to many existing buses. 

This paper is organized as follows. H.264 transform algo- 
rithms are described in section 2. Our proposed architecture is 
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Figure I :  Block diagram of H.264 encoding flow 

illustrated in section 3. Section 4 shows the dynamic range analy- 
sis for each transform. A multi-transform processor design which 
can execute all 4 x 4 transforms in H.264 is shown in section 5.  
Implementation result and the comparison with other DCT archi- 
tectures are shown in section 6. Finally, a conclusion is given in 
section 7. 

2. TRANSFORM CODING IN H.264 

Fig. I shows the encoding flow of H.264, which is a hybrid coder 
similar to H.263. The input frame is divided into macroblocks 
(MBs) of 16 x 16 pixels. Each MB performs spatial and temporal 
prediction to find the best predictor in the spatial and temporal do- 
main. The spatial prediction is also called intra prediction. There 
are two types of intra prediction in H.264. One is 4 x 4 intra pre- 
diction and the other is 16 x 16 intra prediction. The temporal 
prediction is the multiple reference frame and variable block sizc 
motion estimation. Its prediction precision is quarter pixel in the 
baseline profile. The residual MB is then obtained by subtracting 
predictor from the original. 

The residual MB is coded as Fig.2. It is funher divided into 
sixteen 4 x 4 blocks for luminance and 4 blocks for chrominance. 
If the 16 x 16 intra prediction mode is chosen for the MB. the DC 
terms of the luminance blocks are extracted lo form a 4 x 4 block. 
Hadamard transform is then applied on it. The DC terms of the 
chrominance blocks are also extracted to 2 x 2 blocks. A 2 x 2 
transform is used for these DC terms for block number 16 and 17 
in Fig.2. 

There are two types o f 4  x 4  transforms for the residual coding. 
The first one is for luminance residual blocks. The transform and 
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Figure 2;  Residual coding order of H.264 
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Figure 3: Fast algorithm of 4 x 4 forward transform for residual 
blocks 

inverse transform matrices are shown in 3 . 1  and Eq.2. Their fast 
algorithms are shown in Fig.3 and Fig.4. The transform matrix 
only contains 4 coefficients,l,-1,2,-2, which can he implemented 
by shifters and adders. The fast algorithm in Fig.3 further reduces 
the number of the addition from 16 to 8 with butterfly operations. 
The inverse transform is very similar to the forward transform and 
the complexity is the same. Note that the inverse transform matrix 
is scaled inverse of the transform matrix. W e  scaling is done by 
the quantization and dequantization steps. 

FO 1 1 1 1  xo 

[ ::] =[I -: -2 r: 2 -:] -1 [ ::] x3 
(1) 
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The other type of the transform is Hadamard transform. It is 
applied to the luminance DC terms in 16  x 16 intra prediction 
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Figure 4 Fast algorithm of 4 x 4 inverse transform for residual 
blocks 
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Figure 5 :  Fast algorithm of 4 x 4 Hadamard transform for residual 
Mocks 

mode. The transform matrix is shown in Eq.3 and the fast imple- 
mentation is given in Fig.5. W e  Hadamard transform is a sim- 
plified version of Eq.1 by replacing the coefficient 2 by I .  The 
inverse Hadamard transform is simply the transpose of Eq.3 since 
Hadamard transform is orthogonal. Because the transform matrix 
is symmetric, the inverse Hadamard transform is the same as the 
forward transform. The Hadamard transform matrix is also scaled. 
The scaling factor is 4 for each 2D transform. 

r F o i  r i  1 I i i r x o i  

3. PROPOSED PARALLEL ARCHITECTURE 

The proposed parallel architecture is shown in Fig.6, which con- 
tains two I D  transform units and a transpose register array. The ID 
transform unit is implemented by using fast algorithm data flow 
like Fig.3,4 and 5 .  Since the fast algorithm only contains shift and 
addition operations, the ID transform operation is designed to he 
completed within one cycle. Note that the shift operations in the 
hardware implementation are done by wirings. No delay or area 
will be introduced in the shift operations. 

The transpose register element consists of a three input mul- 
tiplexer and a register. The multiplexer controls the data flow of 
the transpose register array. The first input of the multiplexer is a 
self feedback from the register. It is used for "no operation"(N0P) 
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range of 1 bit. The I D  transform outputs, FO - El, should be 12 
hits because there are some components doubled before additions. 
The transpose register array hit width is determined by the first ID 
transform output. So the bit width of the transpose register array 
is thus 12 hits. 

The dynamic range of the ID forward transform increases 3 
bits from the discussion above. The input bit width of the second 
I D  transform is 12 bits from the transpose register array and the 
output should be 15 bits. 

4.2. 4 x 4 inverse transform for residual block 

The input of the inverse transform is from the inverse quantiza- 
tion function. The specification of H.264 only guarantees that 16 
bits arithmetic is enough. But if we further investigate the trans- 
form and quantization algorithms in H.264. we will find that the 
dynamic range of the inverse quantization output is 15 bits since 
the quantizatiodinverse quantization scaling factor is less than 1. 

In the 4 x 4 inverse transform implementation, there is one 
extra thing needed to be done in the output stage. H.264 states 
that the reconstmction value should be shifted right by 6 bits with 
rounding. This operation requires additional four adders to do the 
rounding operations. 

4.3. Hadamard transform 

The input of the Hadamard transform is the DC coefficients after 
quantization. The quantization of the DC terms in 16 x 16 in- 
tra mode is different to other modes. It preserves two extra bits 
comparing to other modes. The smallest quantization parameter 
(QP) has an equal effect of dividing by IO, which reduces 3 bits 
of dynamic range in the normal mode. Since two extra bits are 
preserved in 16 x 16 intra mode. the dynamic range of the input 
is 15-3+2=14 hits. The ID  Hadamard transform will increase dy- 
namic range by 2 hits, so the transpose register array should be 
implemented with 16 bits. 

S. MULTIPLE FUNCTION TRANSFORM PROCESSOR 
DESIGN 

In H.264 encoding scheme, the computation complexity of the 
transform is about double of the pixel rate (forward and inverse 
transforms). The processing speed of our proposed parallel archi- 
tecture is much higher than the existing video format. In order 
tn reduce the gate count required for the three different transform 
processors, we combine the three transform units into one multi- 
ple function transform processor which can execute all the three 
transform operations in H.264. 

In our proposed architecture shown in Fig.6. the 1D transform 
can he any type of the transform. If a reconfigurable ID trans- 
form unit which can he configured to one of the three transforms 
in H.264 is applied, the architecture can be extend to a multiple 
function transform processor. 

By the observation of Fig.3 to 5 ,  we can find that every 1D 
transform contains 8 arithmetical operations. And Hadamard trans- 
form can he achieved by removing the scaling factor, which can be 
easily done by multiplexers. In order to get a clear view of how to 
achieve multiple transforms in a single design, we overlap Fig.3.4 
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Figure 6: Proposed parallel transform architecture 

condition. The second input of the multiplexer is the data from the 
upper register element. The third input is the data from the right, 
If  all of the multiplexers select the data from the upper register 
elements. the data in the register array will be shift down. The bot- 
tom row of the register array will be outputted to the second ID 
transform unit as the left transform pan of FigS. However, if the 
multiplexers select the data from the right, the data will be shift 
to the left and the leftest column of the register array will be sent 
to the second ID transform unit. The direction of the transpose 
register array is controlled by a simple counter which counts valid 
inputs by data enable(DE) signal. The direction will be changed 
every four valid input clocks so that the transpose operation can he 
done i n  this register array. 

Our proposed architecture has a fixed latency of 4 clock cy- 
cles. Unlike the serial architecture described in [SI. this proposed 
archilcclure can output data even the next block data is not contin- 
uously inputted. This feature is done by preserving the data valid 
status in the register array. The registers on the bottom row of 
Fig.5 are built for this function. The registers preserve the latest 
four input data enable signals for the output enable (OE) signal. 
The feedback loop is used for NOP condition, which is the same 
as the signal for the transpose register array. The condition of NOP 
happens when data counter # 0 and DE = 0, which implies input 
data transfer break within a block. Since the transpose register 
file changes direction when all the data arc filled, the data transfer 
break within a block will result in a stall cycle. 

4. BIT WIDTH ANALYSIS 

The bit width requirements of these three transform matrices in 
H.264 are not the same. By assigned the lowest required bit widths 
to datapath and registers, the gate count and timing can be opti- 
mized. The detail analysis is given in the following subsections. 

4.1. 4 x 4 transform for residual block 

The input of the forward transform is the residual block. The dy. 
namiciange of the residual is from -256 to +255, i.e. 9 bits. From 
Fig.3, the bit width of the first column adder outputs should be 10 
bits since addition and subtraction operations increase the dynamic 

and 5 togethir. The overlapped dataflow figure is shown in Fig.7. 
In Fig.7, all the adders have three inputs. It means that a common 
input which is not changed by the transform type exists. So only 
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Figure 7: Overlapped data flow of three fast algorithms 

one of the two inputs in the 8 adders is required lo be selected by 
the multiplexers. The multiplexers are controlled by the transform 
selection control bits of the input. Moreover, 3 out of 8 adders are 
replaced by an adderlsubtractor. which can dynamically change its 
functionality from an adder to a subtractor. 

The bit width of all the arithmetical parts and registers is set 
to 16 since the maximum bit width of the three transforms is 16. 
One extra output stage which implements the rounding and shift- 
ing operations in the inverse transform is added after the output of 
the second ID transform. This stage can be bypass for the other 
two transform configurations. 

The configuration bits for the first ID transform are preserved 
like the DE signals in Fig.6 for the fast switching between two 
transform matrices. By preserving these configuration bits, the 
two ID transform modules can perform different transforms at the 
same time. The type for the second 1D transform is always correct 
since the configuration bits and input data are synchronously fed 
into the register array. 

6. IMPLEMENTATIONS AND COMPARISON 

HDL design flow is used to reduce design period and provide tech- 
nology independent portability. The three 4 x 4 transforms for 
H.264 have been mapped in our proposed parallel architecture and 
synthesized in TSMC 0 . 3 5 ~  technology. The gate count and de- 
lay are listed in Table l .  In order to compare the implementation 
results to serial versions of the transform architecture, shrinking 
down version of 151 is also implemented. This architecture is more 
than three times faster than [SI, and also smaller when RAM area 
is included. 

The multiple transform processor implementation is slower 
and bigger than the dedicated design. The processing speed can 
be achieved to 320M pixelslsec at 80Mhz. It is sufficient for the 
existing video formats including HDTV formats. The area of the 
multiple transform processor is less than the sum of three trans- 
form units. It is a cost efficient accelerator solution for platform 
based video codec design. 

7. CONCLUSIONS 

In this paper. we propose a high speed, parallel transform archi- 
tecture for MPEG-4 AVClH.264. Forwardlnverse transforms for 
residual block and DC terms can be mapped to this architecture. 
The architecture could process four pixels per clock cycle. We 
have mapped three transform matrices used in MPEG-4 AVUH.264 
to TSMC 0 . 3 5 ~  technology. The processing speed can achieve 

Table 1: Implementation results of our proposed parallel architec- 
tures and serial architecture 

I 11 Critical path I Area I/ 
delay (ns) (gates) 

4 x 4  Forward 
4 x 4  Inverse 
4 x 4 Hadamard 8.36 

Multi-transforms 11.35 
Serial Forward151 6.16+ 

I 
. .  I( RAM Delay I 16 x 12- I 

500 Msampledsec for all of the three transform matrices. This 
proposed architecture is very compact; for the 4 x 4 forward trans- 
form, the gate count is only 3737. Comparing to other serial archi- 
tectures, it has better timing-area property. We also implemented 
a multiple function transform processor which can process all the 
4 x 4 transforms in MPEG-4 AVClH.264. This architecture can 
be applied to a hardware accelerator or dedicated hardware design 
for MPEG-4 AVCiH.264 video codec. 
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