
PARALLEL 4 x 4 2D TRANSFORM AND INVERSE TRANSFORM ARCHITECTURE FOR
MPEG-4 AVUH.264

Tu-Chih Wung, Yu- Wen Huang. Hung-Chi Fang, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering,
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

{eric, yuwen, honchi, lgchen} @video.ee.ntu.edu.tw

ABSTRACT

Transform coding has been widely used in video coding standards.
In this paper. a hardware architecture for accelerating transform
coding operations in MPEG-4 AVC/H.264[2] is presented. This
architecture calculates 4 inputs in parallel by the fast algorithms
described in [4]. The transpose operations are implemented by a
register array with directional transfers. This architecture has been
mapped into a 4 x 4 multiple transforms unit and synthesized in
TSMC 0.35um technology. The multiple transform processor can
process 320M pixeldsec at SOMhz for all 4 x 4 transforms used in
MPEG-4 AVC/ H.264.

1. INTRODUCTION

MPEG-4 AVUH.264 is initiated by ITU-T as H.26L and will be-
come a joint standard for ITU-T and MPEG. The compression gain
of H.264 is much higher than H.263[1] and MPEG-4 simple pro-
file. One of the major differences between H.263 and H.264 is
the transform coding. H.264 adopts variable block size motion
compensation scheme and the smallest block size is 4 x 4 pixels,
Transform coding for residual coding is set to 4 x 4 to match the
smallest block size. Although the transform coding gain decreases
a little comparing to 8 x 8 DCT[3] in H.263, good motion estima-
tion results in better PSNR performance.

Another advantage of H.264 transform coding is the simplic-
i ty of the transform. Integer coefficient transform, which is a close
approximation to DCT, is adopted in H.264. Since the coefficients
are integers, there will be no mismatch problem like H.263, and
the restriction of intra update in H.263 is removed. Integer coef-
ficients also imply simple hardware implementation. H.264 only
use 4 coefficients for the transforms. And the multiplications can
be replaced by shifts and additions.

Although the computation complexity ofthe transforms in the
H.264 standard is less than H.263, hardware implementation of
the transform coding is required in both dedicated and platform
based codec systems. Dedicated hardware design of codec re-
quires transform unit to complete the dataflow. Platform based
design usually requires transform unit as a coprocessor to increase
the processing rate and alleviate the loading of the processor. In
this paper, we propose a parallel architecture to increase the data
processing rate in the transform unit. The architecture can process
4 pixels per cycle with a small gate count. The interface bit width
is 64 bits so that it can be easily adapted to many existing buses.

This paper is organized as follows. H.264 transform algo-
rithms are described in section 2. Our proposed architecture is

Header J-7

vi

Figure I : Block diagram of H.264 encoding flow

illustrated in section 3. Section 4 shows the dynamic range analy-
sis for each transform. A multi-transform processor design which
can execute all 4 x 4 transforms in H.264 is shown in section 5.
Implementation result and the comparison with other DCT archi-
tectures are shown in section 6. Finally, a conclusion is given in
section 7.

2. TRANSFORM CODING IN H.264

Fig. I shows the encoding flow of H.264, which is a hybrid coder
similar to H.263. The input frame is divided into macroblocks
(MBs) of 16 x 16 pixels. Each MB performs spatial and temporal
prediction to find the best predictor in the spatial and temporal do-
main. The spatial prediction is also called intra prediction. There
are two types of intra prediction in H.264. One is 4 x 4 intra pre-
diction and the other is 16 x 16 intra prediction. The temporal
prediction is the multiple reference frame and variable block sizc
motion estimation. Its prediction precision is quarter pixel in the
baseline profile. The residual MB is then obtained by subtracting
predictor from the original.

The residual MB is coded as Fig.2. It is funher divided into
sixteen 4 x 4 blocks for luminance and 4 blocks for chrominance.
If the 16 x 16 intra prediction mode is chosen for the MB. the DC
terms of the luminance blocks are extracted lo form a 4 x 4 block.
Hadamard transform is then applied on it. The DC terms of the
chrominance blocks are also extracted to 2 x 2 blocks. A 2 x 2
transform is used for these DC terms for block number 16 and 17
in Fig.2.

There are two types o f 4 x 4 transforms for the residual coding.
The first one is for luminance residual blocks. The transform and

II-800 0-7803-7161-31031$11.00 02003 lEEE

t,
4 pixels

Chrominance 2x2 DC

Figure 2; Residual coding order of H.264

xo FO

x1 F2

x2 F1

x3 F3

Figure 3: Fast algorithm of 4 x 4 forward transform for residual
blocks

inverse transform matrices are shown in 3 . 1 and Eq.2. Their fast
algorithms are shown in Fig.3 and Fig.4. The transform matrix
only contains 4 coefficients,l,-1,2,-2, which can he implemented
by shifters and adders. The fast algorithm in Fig.3 further reduces
the number of the addition from 16 to 8 with butterfly operations.
The inverse transform is very similar to the forward transform and
the complexity is the same. Note that the inverse transform matrix
is scaled inverse of the transform matrix. W e scaling is done by
the quantization and dequantization steps.

FO 1 1 1 1 xo

[::] =[I -: -2 r: 2 -:] -1 [::] x3
(1)

F3

XO, 1 1 F'O

x3, -1

The other type of the transform is Hadamard transform. It is
applied to the luminance DC terms in 16 x 16 intra prediction

F'O X'O

F'2 x'1

F'1 X'2

F'3 x'3

Figure 4 Fast algorithm of 4 x 4 inverse transform for residual
blocks

xo FO

x1 F2

x2 F1

x3 F3

Figure 5 : Fast algorithm of 4 x 4 Hadamard transform for residual
Mocks

mode. The transform matrix is shown in Eq.3 and the fast imple-
mentation is given in Fig.5. W e Hadamard transform is a sim-
plified version of Eq.1 by replacing the coefficient 2 by I . The
inverse Hadamard transform is simply the transpose of Eq.3 since
Hadamard transform is orthogonal. Because the transform matrix
is symmetric, the inverse Hadamard transform is the same as the
forward transform. The Hadamard transform matrix is also scaled.
The scaling factor is 4 for each 2D transform.

r F o i r i 1 I i i r x o i

3. PROPOSED PARALLEL ARCHITECTURE

The proposed parallel architecture is shown in Fig.6, which con-
tains two I D transform units and a transpose register array. The ID
transform unit is implemented by using fast algorithm data flow
like Fig.3,4 and 5 . Since the fast algorithm only contains shift and
addition operations, the ID transform operation is designed to he
completed within one cycle. Note that the shift operations in the
hardware implementation are done by wirings. No delay or area
will be introduced in the shift operations.

The transpose register element consists of a three input mul-
tiplexer and a register. The multiplexer controls the data flow of
the transpose register array. The first input of the multiplexer is a
self feedback from the register. It is used for "no operation"(N0P)

II-801

range of 1 bit. The I D transform outputs, FO - El, should be 12
hits because there are some components doubled before additions.
The transpose register array hit width is determined by the first ID
transform output. So the bit width of the transpose register array
is thus 12 hits.

The dynamic range of the ID forward transform increases 3
bits from the discussion above. The input bit width of the second
I D transform is 12 bits from the transpose register array and the
output should be 15 bits.

4.2. 4 x 4 inverse transform for residual block

The input of the inverse transform is from the inverse quantiza-
tion function. The specification of H.264 only guarantees that 16
bits arithmetic is enough. But if we further investigate the trans-
form and quantization algorithms in H.264. we will find that the
dynamic range of the inverse quantization output is 15 bits since
the quantizatiodinverse quantization scaling factor is less than 1.

In the 4 x 4 inverse transform implementation, there is one
extra thing needed to be done in the output stage. H.264 states
that the reconstmction value should be shifted right by 6 bits with
rounding. This operation requires additional four adders to do the
rounding operations.

4.3. Hadamard transform

The input of the Hadamard transform is the DC coefficients after
quantization. The quantization of the DC terms in 16 x 16 in-
tra mode is different to other modes. It preserves two extra bits
comparing to other modes. The smallest quantization parameter
(QP) has an equal effect of dividing by IO, which reduces 3 bits
of dynamic range in the normal mode. Since two extra bits are
preserved in 16 x 16 intra mode. the dynamic range of the input
is 15-3+2=14 hits. The ID Hadamard transform will increase dy-
namic range by 2 hits, so the transpose register array should be
implemented with 16 bits.

S. MULTIPLE FUNCTION TRANSFORM PROCESSOR
DESIGN

In H.264 encoding scheme, the computation complexity of the
transform is about double of the pixel rate (forward and inverse
transforms). The processing speed of our proposed parallel archi-
tecture is much higher than the existing video format. In order
tn reduce the gate count required for the three different transform
processors, we combine the three transform units into one multi-
ple function transform processor which can execute all the three
transform operations in H.264.

In our proposed architecture shown in Fig.6. the 1D transform
can he any type of the transform. If a reconfigurable ID trans-
form unit which can he configured to one of the three transforms
in H.264 is applied, the architecture can be extend to a multiple
function transform processor.

By the observation of Fig.3 to 5 , we can find that every 1D
transform contains 8 arithmetical operations. And Hadamard trans-
form can he achieved by removing the scaling factor, which can be
easily done by multiplexers. In order to get a clear view of how to
achieve multiple transforms in a single design, we overlap Fig.3.4

e
2
t

t

t

t

-E,
. . $E

Figure 6: Proposed parallel transform architecture

condition. The second input of the multiplexer is the data from the
upper register element. The third input is the data from the right,
If all of the multiplexers select the data from the upper register
elements. the data in the register array will be shift down. The bot-
tom row of the register array will be outputted to the second ID
transform unit as the left transform pan of FigS. However, if the
multiplexers select the data from the right, the data will be shift
to the left and the leftest column of the register array will be sent
to the second ID transform unit. The direction of the transpose
register array is controlled by a simple counter which counts valid
inputs by data enable(DE) signal. The direction will be changed
every four valid input clocks so that the transpose operation can he
done i n this register array.

Our proposed architecture has a fixed latency of 4 clock cy-
cles. Unlike the serial architecture described in [SI. this proposed
archilcclure can output data even the next block data is not contin-
uously inputted. This feature is done by preserving the data valid
status in the register array. The registers on the bottom row of
Fig.5 are built for this function. The registers preserve the latest
four input data enable signals for the output enable (OE) signal.
The feedback loop is used for NOP condition, which is the same
as the signal for the transpose register array. The condition of NOP
happens when data counter # 0 and DE = 0, which implies input
data transfer break within a block. Since the transpose register
file changes direction when all the data arc filled, the data transfer
break within a block will result in a stall cycle.

4. BIT WIDTH ANALYSIS

The bit width requirements of these three transform matrices in
H.264 are not the same. By assigned the lowest required bit widths
to datapath and registers, the gate count and timing can be opti-
mized. The detail analysis is given in the following subsections.

4.1. 4 x 4 transform for residual block

The input of the forward transform is the residual block. The dy.
namiciange of the residual is from -256 to +255, i.e. 9 bits. From
Fig.3, the bit width of the first column adder outputs should be 10
bits since addition and subtraction operations increase the dynamic

and 5 togethir. The overlapped dataflow figure is shown in Fig.7.
In Fig.7, all the adders have three inputs. It means that a common
input which is not changed by the transform type exists. So only

U-802

xo
x1

x 2

x 3

YO

Y2

Y1

Y3

Figure 7: Overlapped data flow of three fast algorithms

one of the two inputs in the 8 adders is required lo be selected by
the multiplexers. The multiplexers are controlled by the transform
selection control bits of the input. Moreover, 3 out of 8 adders are
replaced by an adderlsubtractor. which can dynamically change its
functionality from an adder to a subtractor.

The bit width of all the arithmetical parts and registers is set
to 16 since the maximum bit width of the three transforms is 16.
One extra output stage which implements the rounding and shift-
ing operations in the inverse transform is added after the output of
the second ID transform. This stage can be bypass for the other
two transform configurations.

The configuration bits for the first ID transform are preserved
like the DE signals in Fig.6 for the fast switching between two
transform matrices. By preserving these configuration bits, the
two ID transform modules can perform different transforms at the
same time. The type for the second 1D transform is always correct
since the configuration bits and input data are synchronously fed
into the register array.

6. IMPLEMENTATIONS AND COMPARISON

HDL design flow is used to reduce design period and provide tech-
nology independent portability. The three 4 x 4 transforms for
H.264 have been mapped in our proposed parallel architecture and
synthesized in TSMC 0 . 3 5 ~ technology. The gate count and de-
lay are listed in Table l . In order to compare the implementation
results to serial versions of the transform architecture, shrinking
down version of 151 is also implemented. This architecture is more
than three times faster than [SI, and also smaller when RAM area
is included.

The multiple transform processor implementation is slower
and bigger than the dedicated design. The processing speed can
be achieved to 320M pixelslsec at 80Mhz. It is sufficient for the
existing video formats including HDTV formats. The area of the
multiple transform processor is less than the sum of three trans-
form units. It is a cost efficient accelerator solution for platform
based video codec design.

7. CONCLUSIONS

In this paper. we propose a high speed, parallel transform archi-
tecture for MPEG-4 AVClH.264. Forwardlnverse transforms for
residual block and DC terms can be mapped to this architecture.
The architecture could process four pixels per clock cycle. We
have mapped three transform matrices used in MPEG-4 AVUH.264
to TSMC 0 . 3 5 ~ technology. The processing speed can achieve

Table 1: Implementation results of our proposed parallel architec-
tures and serial architecture

I 11 Critical path I Area I/
delay (ns) (gates)

4 x 4 Forward
4 x 4 Inverse
4 x 4 Hadamard 8.36

Multi-transforms 11.35
Serial Forward151 6.16+

I
. . I(RAM Delay I 16 x 12- I

500 Msampledsec for all of the three transform matrices. This
proposed architecture is very compact; for the 4 x 4 forward trans-
form, the gate count is only 3737. Comparing to other serial archi-
tectures, it has better timing-area property. We also implemented
a multiple function transform processor which can process all the
4 x 4 transforms in MPEG-4 AVClH.264. This architecture can
be applied to a hardware accelerator or dedicated hardware design
for MPEG-4 AVCiH.264 video codec.

8. REFERENCES

[I] Draft ITU-T Recommendation H.263, Video coding for low
bitrate communication, ITU-T, 1997.

[2] T. Wiegand. "Working draft for recommendation H.264",
Joint Video Team(1VT) of ISOIIEC MPEG and ITU-T VCEG,
Doc. JVT-C167, May, 2002. Available at ftp://ftp.imtc-
Rles.org/jvt-experts.

131 K. R. Rao and P. Yip, Discrete Cosine TransfomxAlgorithms.
Advantages. Applications. Boston: Academic Press. 1990.

[4] H. Malvar, A. Hallapuro, M. Karczewicz. and L. Kerof-
sky, "Low-complexity transform and quantization with 16-
bit arithmetic for H.26L", Proceeding of lClP 2002, vol. 2,
pp.489-492, Rochester, NY, Sept. 2002.

151 A. Madisetti and A.N. Willson, "A 100 MHz 2-D 8 x 8
DCTIIDCT processor for HDTV applications", IEEE Trans-
action on Circuits and Systems for Video Technology, vol. 5 .
no. 2,pp. 158-165,Apr., 1995.

[6] A. Hallapuro, M. Karczewicz, and H. Malvar, "Low complex-
ity transform and quantization", JVT of ISO/IEC MPEG and
ITU-T VCEG, Docs. JVT-BO38 and JVT-BO39, Jan. 2002.

[7] A. Hallapuro, M. Karczewicz, "Low complexity (I)DCT',
ITU-T SG16 Doc. VCEG-N43, Sept., 2001.

[81 H. S. Malvar. "Low-Complexity length-4 transform and quan-
tization with 16-Bit arithmetic", ITU-T SG16 Doc. VCEG-
N44, Sept., 2001.

U-803

ftp://ftp.imtc

